Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

A Deep Learning Approach for Microwave and Millimeter-Wave Radiometer Calibration

Our Title

IEEE Project Abstract

Deep learning artificial neural network techniques can be applied for on-orbit calibration of microwave and millimeter-wave radiometer space borne instruments, including those for small satellites. The noise-wave model has been employed for noise characterization and validation of the proposed deep learning calibration technique for a synthetically generated Dicke-switching radiometer. The developed deep learning neural network radiometer calibrator produces high accuracy estimates of antenna temperatures from the measurements of radiometer output voltage and thermistor readings. Tests with noise-free and noisy samples of the developed model have shown that the proposed calibration method does not add any significant noise to the radiometer calibration. The performance of the proposed method does not degrade with increased nonlinearity for a radiometer, while nonlinearity is a challenging issue for conventional calibration techniques. The deep learning calibration model learns the radiometer noise characteristics from radiometer prelaunch measurements during thermal vacuum chamber testing. The neural network calibrator proposed in this paper has self-learning capability during the on-orbit operation of a radiometer that can be used to improve the performance of on-orbit calibration. The proposed technique is demonstrated by comparing the residual uncertainty of the deep learning calibration with the theoretical value. No numerical study is presented to compare the performance with conventional calibration techniques. The new method may be solely applied to calibrate the radiometer or applied along with conventional calibration techniques.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team