Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

A Fuzzy Restricted Boltzmann Machine: Novel Learning Algorithms Based on Crisp Possibilistic Mean Value of Fuzzy Numbers

Our Title

IEEE Project Abstract

A fuzzy restricted Boltzmann machine (FRBM) is extended from a restricted Boltzmann machine (RBM) by replacing all the real-valued parameters with fuzzy numbers. A new FRBM that employs the crisp possibilistic mean value of a fuzzy number to defuzzify the fuzzy free energy function is presented. This approach is much clearer and easier to obtain the expression of the defuzzified free energy function and its approximation than the centroid method. Several theorems that discuss the error bounds of the approximation to ensure the rationality and validity are also investigated. Learning algorithms are given for the designed FRBM with symmetric triangular fuzzy numbers (STFNs), asymmetric triangular fuzzy numbers, and Gaussian fuzzy numbers. By appropriately choosing the parameters, a theorem is concluded that all FRBMs with symmetric fuzzy numbers will have identical learning algorithm to that of FRBMs with STFNs. This is illustrated by a case of FRBM with Gaussian fuzzy numbers. Two experiments including the MNIST handwriting recognition and the Bars-and-Stripes benchmark are carried out. The results show that the proposed FRBMs significantly outperform RBMs in learning accuracy and generalization ability, especially when encountering unlearned samples and recovering incomplete images.A fuzzy restricted Boltzmann machine (FRBM) is extended from a restricted Boltzmann machine (RBM) by replacing all the real-valued parameters with fuzzy numbers. A new FRBM that employs the crisp possibilistic mean value of a fuzzy number to defuzzify the fuzzy free energy function is presented. This approach is much clearer and easier to obtain the expression of the defuzzified free energy function and its approximation than the centroid method. Several theorems that discuss the error bounds of the approximation to ensure the rationality and validity are also investigated. Learning algorithms are given for the designed FRBM with symmetric triangular fuzzy numbers (STFNs), asymmetric triangular fuzzy numbers, and Gaussian fuzzy numbers. By appropriately choosing the parameters, a theorem is concluded that all FRBMs with symmetric fuzzy numbers will have identical learning algorithm to that of FRBMs with STFNs. This is illustrated by a case of FRBM with Gaussian fuzzy numbers. Two experiments including the MNIST handwriting recognition and the Bars-and-Stripes benchmark are carried out. The results show that the proposed FRBMs significantly outperform RBMs in learning accuracy and generalization ability, especially when encountering unlearned samples and recovering incomplete images.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team