Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Active Learning From Imbalanced Data: A Solution of Online Weighted Extreme Learning Machine

Our Title

IEEE Project Abstract

It is well known that active learning can simultaneously improve the quality of the classification model and decrease the complexity of training instances. However, several previous studies have indicated that the performance of active learning is easily disrupted by an imbalanced data distribution. Some existing imbalanced active learning approaches also suffer from either low performance or high time consumption. To address these problems, this paper describes an efficient solution based on the extreme learning machine (ELM) classification model, called active online-weighted ELM (AOW-ELM). The main contributions of this paper include: 1) the reasons why active learning can be disrupted by an imbalanced instance distribution and its influencing factors are discussed in detail; 2) the hierarchical clustering technique is adopted to select initially labeled instances in order to avoid the missed cluster effect and cold start phenomenon as much as possible; 3) the weighted ELM (WELM) is selected as the base classifier to guarantee the impartiality of instance selection in the procedure of active learning, and an efficient online updated mode of WELM is deduced in theory; and 4) an early stopping criterion that is similar to but more flexible than the margin exhaustion criterion is presented. The experimental results on 32 binary-class data sets with different imbalance ratios demonstrate that the proposed AOW-ELM algorithm is more effective and efficient than several state-of-the-art active learning algorithms that are specifically designed for the class imbalance scenario.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team