Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis

Our Title

IEEE Project Abstract

The rapid increase in the number of Android malware poses great challenges to anti-malware systems, because the sheer number of malware samples overwhelms malware analysis systems. The classification of malware samples into families, such that the common features shared by malware samples in the same family can be exploited in malware detection and inspection, is a promising approach for accelerating malware analysis. Furthermore, the selection of representative malware samples in each family can drastically decrease the number of malware to be analyzed. However, the existing classification solutions are limited because of the following reasons. First, the legitimate part of the malware may misguide the classification algorithms because the majority of Android malware are constructed by inserting malicious components into popular apps. Second, the polymorphic variants of Android malware can evade detection by employing transformation attacks. In this paper, we propose a novel approach that constructs frequent subgraphs (fregraphs) to represent the common behaviors of malware samples that belong to the same family. Moreover, we propose and develop FalDroid, a novel system that automatically classifies Android malware and selects representative malware samples in accordance with fregraphs. We apply it to 8407 malware samples from 36 families. Experimental results show that FalDroid can correctly classify 94.2% of malware samples into their families using approximately 4.6 sec per app. FalDroid can also dramatically reduce the cost of malware investigation by selecting only 8.5% to 22% representative samples that exhibit the most common malicious behavior among all samples.The rapid increase in the number of Android malware poses great challenges to anti-malware systems, because the sheer number of malware samples overwhelms malware analysis systems. The classification of malware samples into families, such that the common features shared by malware samples in the same family can be exploited in malware detection and inspection, is a promising approach for accelerating malware analysis. Furthermore, the selection of representative malware samples in each family can drastically decrease the number of malware to be analyzed. However, the existing classification solutions are limited because of the following reasons. First, the legitimate part of the malware may misguide the classification algorithms because the majority of Android malware are constructed by inserting malicious components into popular apps. Second, the polymorphic variants of Android malware can evade detection by employing transformation attacks. In this paper, we propose a novel approach that constructs frequent subgraphs (fregraphs) to represent the common behaviors of malware samples that belong to the same family. Moreover, we propose and develop FalDroid, a novel system that automatically classifies Android malware and selects representative malware samples in accordance with fregraphs. We apply it to 8407 malware samples from 36 families. Experimental results show that FalDroid can correctly classify 94.2% of malware samples into their families using approximately 4.6 sec per app. FalDroid can also dramatically reduce the cost of malware investigation by selecting only 8.5% to 22% representative samples that exhibit the most common malicious behavior among all samples.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team