Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

DTFP-Growth: Dynamic Threshold Based FP-Growth Rule Mining Algorithm Through Integrating Gene Expression, Methylation and Protein-Protein Interaction

Our Title

IEEE Project Abstract

Association rule mining is an important technique for identifying interesting relationships between gene pairs in a biological data set. Earlier methods basically work for a single biological data set, and, in maximum cases, a single minimum support cutoff can be applied globally, i.e., across all genesets/itemsets. To overcome this limitation, in this paper, we propose dynamic threshold-based FP-growth rule mining algorithm that integrates gene expression, methylation and protein-protein interaction profiles based on weighted shortest distance to find the novel associations among different pairs of genes in multiview data sets. For this purpose, we introduce three new thresholds, namely, Distance-based Variable/Dynamic Supports (DVS), Distance-based Variable Confidences (DVC), and Distance-based-Variable Lifts (DVL) for each rule by integrating co-expression, co-methylation, and protein-protein interactions existed in the multi-omics data set. We develop the proposed algorithm utilizing these three novel multiple threshold measures. In the proposed algorithm, the values of DVS, DVC, and DVL are computed for each rule separately, and subsequently it is verified whether the support, confidence, and lift of each evolved rule are greater than or equal to the corresponding individual DVS, DVC, and DVL values, respectively, or not. If all these three conditions for a rule are found to be true, the rule is treated as a resultant rule. One of the major advantages of the proposed method compared with other related state-of-the-art methods is that it considers both the quantitative and interactive significance among all pairwise genes belonging to each rule. Moreover, the proposed method generates fewer rules, takes less running time, and provides greater biological significance for the resultant top-ranking rules compared to previous methods.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team