Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

Deep Canonical Time Warping for Simultaneous Alignment and Representation Learning of Sequences

Our Title

IEEE Project Abstract

Machine learning algorithms for the analysis of time-series often depend on the assumption that utilised data are temporally aligned. Any temporal discrepancies arising in the data is certain to lead to ill-generalisable models, which in turn fail to correctly capture properties of the task at hand. The temporal alignment of time-series is thus a crucial challenge manifesting in a multitude of applications. Nevertheless, the vast majority of algorithms oriented towards temporal alignment are either applied directly on the observation space or simply utilise linear projections-thus failing to capture complex, hierarchical non-linear representations that may prove beneficial, especially when dealing with multi-modal data (e.g., visual and acoustic information). To this end, we present Deep Canonical Time Warping (DCTW), a method that automatically learns non-linear representations of multiple time-series that are (i) maximally correlated in a shared subspace, and (ii) temporally aligned. Furthermore, we extend DCTW to a supervised setting, where during training, available labels can be utilised towards enhancing the alignment process. By means of experiments on four datasets, we show that the representations learnt significantly outperform state-of-the-art methods in temporal alignment, elegantly handling scenarios with heterogeneous feature sets, such as the temporal alignment of acoustic and visual information.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team