Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Deep Learning from Noisy Image Labels with Quality Embedding

Our Title

IEEE Project Abstract

There is an emerging trend to leverage noisy image datasets in many visual recognition tasks. However, the label noise among datasets severely degenerates the performance of deep learning approaches. Recently, one mainstream is to introduce the latent label to handle label noise, which has shown promising improvement in the network designs. Nevertheless, the mismatch between latent labels and noisy labels still affects the predictions in such methods. To address this issue, we propose a probabilistic model, which explicitly introduces an extra variable to represent the trustworthiness of noisy labels, termed as the quality variable. Our key idea is to identify the mismatch between the latent and noisy labels by embedding the quality variables into different subspaces, which effectively minimizes the influence of label noise. At the same time, reliable labels are still able to be applied for training. To instantiate the model, we further propose a contrastive-additive noise network (CAN), which consists of two important layers: 1) the contrastive layer that estimates the quality variable in the embedding space to reduce the influence of noisy labels and 2) the additive layer that aggregates the prior prediction and noisy labels as the posterior to train the classifier. Moreover, to tackle the challenges in optimization, we deduce an SGD algorithm with the reparameterization tricks, which makes our method scalable to big data. We validate the proposed method on a range of noisy image datasets. Comprehensive results have demonstrated that CAN outperforms the state-of-the-art deep learning approaches.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team