Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

Enhanced Network Anomaly Detection Based on Deep Neural Networks

Our Title

IEEE Project Abstract

Due to the monumental growth of Internet applications in the last decade, the need for security of information network has increased manifolds. As a primary defense of network infrastructure, an intrusion detection system is expected to adapt to dynamically changing threat landscape. Many supervised and unsupervised techniques have been devised by researchers from the discipline of machine learning and data mining to achieve reliable detection of anomalies. Deep learning is an area of machine learning which applies neuron-like structure for learning tasks. Deep learning has profoundly changed the way we approach learning tasks by delivering monumental progress in different disciplines like speech processing, computer vision, and natural language processing to name a few. It is only relevant that this new technology must be investigated for information security applications. The aim of this paper is to investigate the suitability of deep learning approaches for anomaly-based intrusion detection system. For this research, we developed anomaly detection models based on different deep neural network structures, including convolutional neural networks, autoencoders, and recurrent neural networks. These deep models were trained on NSLKDD training data set and evaluated on both test data sets provided by NSLKDD, namely NSLKDDTest+ and NSLKDDTest21. All experiments in this paper are performed by authors on a GPU-based test bed. Conventional machine learning-based intrusion detection models were implemented using well-known classification techniques, including extreme learning machine, nearest neighbor, decision-tree, random-forest, support vector machine, naive-bays, and quadratic discriminant analysis. Both deep and conventional machine learning models were evaluated using well-known classification metrics, including receiver operating characteristics, area under curve, precision-recall curve, mean average precision and accuracy of classification. Experimental results of deep IDS models showed promising results for real-world application in anomaly detection systems.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team