High-dimensional crowdsourced data collected from numerous users produces rich knowledge about our society; however, it also brings unprecedented privacy threats to the participants. Local differential privacy (LDP), a variant of differential privacy, is recently proposed as a state-of-the-art privacy notion. Unfortunately, achieving LDP on high-dimensional crowdsourced data publication raises great challenges in terms of both computational efficiency and data utility. To this end, based on the expectation maximization (EM) algorithm and Lasso regression, we first propose efficient multi-dimensional joint distribution estimation algorithms with LDP. Then, we develop a local differentially private high-dimensional data publication algorithm (LoPub) by taking advantage of our distribution estimation techniques. In particular, correlations among multiple attributes are identified to reduce the dimensionality of crowdsourced data, thus speeding up the distribution learning process and achieving high data utility. Extensive experiments on real-world datasets demonstrate that our multivariate distribution estimation scheme significantly outperforms existing estimation schemes in terms of both communication overhead and estimation speed. Moreover, LoPub can keep, on average, 80% and 60% accuracy over the released datasets in terms of support vector machine and random forest classification, respectively.
To View the Abstract Contents
Or Enquire Now !!!, WISEN Project Specialist will contact you soon.
Now it is Your Time to Shine.
Great careers Start Here.
We Guide you to Every Step
Success! You're Awesome
Thank you for filling out your information!
We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.
To know more details Call 900 31 31 555
The WISEN Team