Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

MRMondrian: Scalable Multidimensional Anonymisation for Big Data Privacy Preservation

Our Title

IEEE Project Abstract

Scalable data processing platforms built on cloud computing becomes increasingly attractive as infrastructure for supporting big data applications. But privacy concerns are one of the major obstacles to making use of public cloud platforms. Multidimensional anonymisation, a global-recoding generalisation scheme for privacy-preserving data publishing, has been a recent focus due to its capability of balancing data obfuscation and usability. Existing multidimensional anonymisation methods suffer from scalability problems when handling big data due to the impractical serial I/O cost. Given the recursive feature of multidimensional anonymisation, parallelisation is an ideal solution to scalability issues. However, it is still a challenge to use existing distributed and parallel paradigms directly for recursive computation. In this paper, we propose a scalable approach for big data multidimensional anonymisation based on MapReduce, a state-of-the-art data processing paradigm. Our basic idea is to partition a data set recursively into smaller partitions using MapReduce until all partitions can fit in the memory of a computing node. A tree indexing structure is proposed to achieve recursive computation. Moreover, we show the applicability of our approach to differential privacy. Experimental results on real-life data demonstrate that our approach can significantly improve the scalability of multidimensional anonymisation over existing methods.Scalable data processing platforms built on cloud computing becomes increasingly attractive as infrastructure for supporting big data applications. But privacy concerns are one of the major obstacles to making use of public cloud platforms. Multidimensional anonymisation, a global-recoding generalisation scheme for privacy-preserving data publishing, has been a recent focus due to its capability of balancing data obfuscation and usability. Existing multidimensional anonymisation methods suffer from scalability problems when handling big data due to the impractical serial I/O cost. Given the recursive feature of multidimensional anonymisation, parallelisation is an ideal solution to scalability issues. However, it is still a challenge to use existing distributed and parallel paradigms directly for recursive computation. In this paper, we propose a scalable approach for big data multidimensional anonymisation based on MapReduce, a state-of-the-art data processing paradigm. Our basic idea is to partition a data set recursively into smaller partitions using MapReduce until all partitions can fit in the memory of a computing node. A tree indexing structure is proposed to achieve recursive computation. Moreover, we show the applicability of our approach to differential privacy. Experimental results on real-life data demonstrate that our approach can significantly improve the scalability of multidimensional anonymisation over existing methods.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team