Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Maximum Correntropy Criterion based Sparse Subspace Learning for Unsupervised Feature Selection

Our Title

IEEE Project Abstract

High-dimensional data contain not only redundancy but also noises produced by the sensors. These noises are usually non-Gaussian distributed. The metrics based on Euclidean distance are not suitable for these situations in general. In order to select the useful features and combat the adverse effects of the noises simultaneously, a robust sparse subspace learning method in unsupervised scenario is proposed in this paper based on the maximum correntropy criterion that shows strong robustness against outliers. Furthermore, an iterative strategy based on half quadratic and an accelerated block coordinate update is proposed. The convergence analysis of the proposed method is also carried out to ensure the convergence to a reliable solution. Extensive experiments are conducted on real-world data sets to show that the new method can filter out the outliers and outperform several state-of-the-art unsupervised feature selection methods.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team