Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

Progressive Stochastic Learning for Noisy Labels

Our Title

IEEE Project Abstract

Large-scale learning problems require a plethora of labels that can be efficiently collected from crowdsourcing services at low cost. However, labels annotated by crowdsourced workers are often noisy, which inevitably degrades the performance of large-scale optimizations including the prevalent stochastic gradient descent (SGD). Specifically, these noisy labels adversely affect updates of the primal variable in conventional SGD. To solve this challenge, we propose a robust SGD mechanism called progressive stochastic learning (POSTAL), which naturally integrates the learning regime of curriculum learning (CL) with the update process of vanilla SGD. Our inspiration comes from the progressive learning process of CL, namely learning from “easy” tasks to “complex” tasks. Through the robust learning process of CL, POSTAL aims to yield robust updates of the primal variable on an ordered label sequence, namely, from “reliable” labels to “noisy” labels. To realize POSTAL mechanism, we design a cluster of “screening losses,” which sorts all labels from the reliable region to the noisy region. To sum up, POSTAL using screening losses ensures robust updates of the primal variable on reliable labels first, then on noisy labels incrementally until convergence. In theory, we derive the convergence rate of POSTAL realized by screening losses. Meanwhile, we provide the robustness analysis of representative screening losses. Experimental results on UCI 1 simulated and Amazon Mechanical Turk crowdsourcing data sets show that the POSTAL using screening losses is more effective and robust than several existing baselines. 1 UCI is the abbreviation of University of California Irvine

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team