Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Quantized Minimum Error Entropy Criterion

Our Title

IEEE Project Abstract

Comparing with traditional learning criteria, such as mean square error, the minimum error entropy (MEE) criterion is superior in nonlinear and non-Gaussian signal processing and machine learning. The argument of the logarithm in Renyi's entropy estimator, called information potential (IP), is a popular MEE cost in information theoretic learning. The computational complexity of IP is, however, quadratic in terms of sample number due to double summation. This creates the computational bottlenecks, especially for large-scale data sets. To address this problem, in this paper, we propose an efficient quantization approach to reduce the computational burden of IP, which decreases the complexity from O(N 2 ) to O(MN) with M ≪ N. The new learning criterion is called the quantized MEE (QMEE). Some basic properties of QMEE are presented. Illustrative examples with linear-in-parameter models are provided to verify the excellent performance of QMEE.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team