Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Robust Adaptive Embedded Label Propagation With Weight Learning for Inductive Classification

Our Title

IEEE Project Abstract

We propose a robust inductive semi-supervised label prediction model over the embedded representation, termed adaptive embedded label propagation with weight learning (AELP-WL), for classification. AELP-WL offers several properties. First, our method seamlessly integrates the robust adaptive embedded label propagation with adaptive weight learning into a unified framework. By minimizing the reconstruction errors over embedded features and embedded soft labels jointly, our AELP-WL can explicitly ensure the learned weights to be joint optimal for representation and classification, which differs from most existing LP models that perform weight learning separately by an independent step before label prediction. Second, existing models usually precalculate the weights over the original samples that may contain unfavorable features and noise decreasing performance. To this end, our model adds a constraint that decomposes original data into a sparse component encoding embedded noise-removed sparse representations of samples and a sparse error part fitting noise, and then performs the adaptive weight learning over the embedded sparse representations. Third, our AELP-WL computes the projected soft labels by trading-off the manifold smoothness and label fitness errors over the adaptive weights and the embedded representations for enhancing the label estimation power. By including a regressive label approximation error for simultaneous minimization to correlate sample features with the embedded soft labels, the out-of-sample issue is naturally solved. By minimizing the reconstruction errors over features and embedded soft labels, classification error and label approximation error jointly, state-of-the-art results are delivered.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team