Project centers in Chennai

IEEE Final Year Project Topics for ECE

Base Paper Title

MalPat: Mining Patterns of Malicious and Benign Android Apps via Permission-Related APIs

Our Title

IEEE Project Abstract

The dramatic rise of Android application (app) marketplaces has significantly gained the success of convenience for mobile users. Consequently, with the advantage of numerous Android apps, Android malware seizes the opportunity to steal privacy-sensitive data by pretending to provide functionalities as benign apps do. To distinguish malware from millions of Android apps, researchers have proposed sophisticated static and dynamic analysis tools to automatically detect and classify malicious apps. Most of these tools, however, rely on manual configuration of lists of features based on permissions, sensitive resources, intents, etc., which are difficult to come by. To address this problem, we study real-world Android apps to mine hidden patterns of malware and are able to extract highly sensitive APIs that are widely used in Android malware. We also implement an automated malware detection system, MalPat, to fight against malware and assist Android app marketplaces to address unknown malicious apps. Comprehensive experiments are conducted on our dataset consisting of 31 185 benign apps and 15 336 malware samples. Experimental results show that MalPat is capable of detecting malware with a high F1 score (98.24%) comparing with the state-of-the-art approaches.The dramatic rise of Android application (app) marketplaces has significantly gained the success of convenience for mobile users. Consequently, with the advantage of numerous Android apps, Android malware seizes the opportunity to steal privacy-sensitive data by pretending to provide functionalities as benign apps do. To distinguish malware from millions of Android apps, researchers have proposed sophisticated static and dynamic analysis tools to automatically detect and classify malicious apps. Most of these tools, however, rely on manual configuration of lists of features based on permissions, sensitive resources, intents, etc., which are difficult to come by. To address this problem, we study real-world Android apps to mine hidden patterns of malware and are able to extract highly sensitive APIs that are widely used in Android malware. We also implement an automated malware detection system, MalPat, to fight against malware and assist Android app marketplaces to address unknown malicious apps. Comprehensive experiments are conducted on our dataset consisting of 31 185 benign apps and 15 336 malware samples. Experimental results show that MalPat is capable of detecting malware with a high F1 score (98.24%) comparing with the state-of-the-art approaches.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team