Project centers in Chennai

IEEE Final Year Project Topic for IT

Base Paper Title

Fast and Scalable Big Data Trajectory Clustering for Understanding Urban Mobility

Our Title

IEEE Project Abstract

Clustering of large-scale vehicle trajectories is an important aspect for understanding urban traffic patterns, particularly for optimizing public transport routes and frequencies and improving the decisions made by authorities. Existing trajectory clustering schemes are not well suited to large numbers of trajectories in dense city road networks due to the difficulty in finding a representative distance measure between trajectories that can scale to very large datasets. In this paper, we propose a novel Dijkstra-based dynamic time warping distance measure, trajDTW between two trajectories, which is suitable for large numbers of overlapping trajectories in a dense road network as found in major cities around the world. We also propose a novel fast-clusiVAT algorithm that can suggest the number of clusters in a trajectory dataset and identify and visualize the trajectories belonging to each cluster. We conduct experiments on a large-scale taxi trajectory dataset consisting of 3.28 million trajectories obtained from the GPS traces of 15 061 taxis within Singapore over a period of one month. Our analysis finds 13 trajectory clusters spanning the major expressways of Singapore, each of which can be further divided into two sub-clusters based on the travel direction. For each cluster, we provide a time-based distribution of trajectories to yield insights into how urban mobility patterns change with the time of day. We compare the trajectory clusters obtained using our approach with those obtained using popular general and trajectory specific clustering frameworks: DBSCAN, OPTICS, NETSCAN, and NEAT. We demonstrate that the clusters obtained using our novel fast-clusiVAT framework are better than those obtained using other clustering schemes, evaluated based on two internal cluster validity measures: Dunn’s and Silhouette indices.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team