Project centers in Chennai

IEEE Final Year Project Topic for IT

Base Paper Title

MIA: Metric Importance Analysis for Big Data Workload Characterization

Our Title

IEEE Project Abstract

Data analytics is at the foundation of both high-quality products and services in modern economies and societies. Big data workloads run on complex large-scale computing clusters, which implies significant challenges for deeply understanding and characterizing overall system performance. In general, performance is affected by many factors at multiple layers in the system stack, hence it is challenging to identify the key metrics when understanding big data workload performance. In this paper, we propose a novel workload characterization methodology using ensemble learning, called Metric Importance Analysis (MIA), to quantify the respective importance of workload metrics. By focusing on the most important metrics, MIA reduces the complexity of the analysis without losing information. Moreover, we develop the MIA-based Kiviat Plot (MKP) and Benchmark Similarity Matrix (BSM) which provide more insightful information than the traditional linkage clustering based dendrogram to visualize program behavior (dis)similarity. To demonstrate the applicability of MIA, we use it to characterize three big data benchmark suites: HiBench, CloudRank-D and SZTS. The results show that MIA is able to characterize complex big data workloads in a simple, intuitive manner, and reveal interesting insights. Moreover, through a case study, we demonstrate that tuning the configuration parameters related to the important metrics found by MIA results in higher performance improvements than through tuning the parameters related to the less important ones.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team