Project centers in Chennai

IEEE Final Year Project Topic for IT

Base Paper Title

Mobile Edge Computing Resources Optimization: A Geo-Clustering Approach

Our Title

IEEE Project Abstract

Mobile edge computing (MEC) is an emerging technology that aims at pushing applications and content close to the users (e.g., at base stations, access points, and aggregation networks) to reduce latency, improve quality of experience, and ensure highly efficient network operation and service delivery. It principally relies on virtualization-enabled MEC servers with limited capacity at the edge of the network. One key issue is to dimension such systems in terms of server size, server number, and server operation area to meet MEC goals. In this paper, we formulate this problem as a mixed integer linear program. We then propose a graph-based algorithm that, taking into account a maximum MEC server capacity, provides a partition of MEC clusters, which consolidates as many communications as possible at the edge. We use a dataset of mobile communications to extensively evaluate them with real world spatio-temporal human dynamics. In addition to quantifying macroscopic MEC benefits, the evaluation shows that our algorithm provides MEC area partitions that largely offload the core, thus pushing the load at the edge (e.g., with 10 small MEC servers between 55% and 64% of the traffic stay at the edge), and that are well balanced through time.Mobile edge computing (MEC) is an emerging technology that aims at pushing applications and content close to the users (e.g., at base stations, access points, and aggregation networks) to reduce latency, improve quality of experience, and ensure highly efficient network operation and service delivery. It principally relies on virtualization-enabled MEC servers with limited capacity at the edge of the network. One key issue is to dimension such systems in terms of server size, server number, and server operation area to meet MEC goals. In this paper, we formulate this problem as a mixed integer linear program. We then propose a graph-based algorithm that, taking into account a maximum MEC server capacity, provides a partition of MEC clusters, which consolidates as many communications as possible at the edge. We use a dataset of mobile communications to extensively evaluate them with real world spatio-temporal human dynamics. In addition to quantifying macroscopic MEC benefits, the evaluation shows that our algorithm provides MEC area partitions that largely offload the core, thus pushing the load at the edge (e.g., with 10 small MEC servers between 55% and 64% of the traffic stay at the edge), and that are well balanced through time.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team