Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Crossbar-Net: A Novel Convolutional Neural Network for Kidney Tumor Segmentation in CT Images

Our Title

IEEE Project Abstract

Due to the unpredictable location, fuzzy texture and diverse shape, accurate segmentation of the kidney tumor in CT images is an important yet challenging task. To this end, we in this paper present a cascaded trainable segmentation model termed as Crossbar-Net. Our method combines two novel schemes: (1)we originally proposed the crossbar patches, which consists of two orthogonal non-squared patches (i.e., the vertical patch andhorizontal patch). The crossbar patches are able to capture both the global and local appearance information of the kidney tumors from both the vertical and horizontal directions simultaneously.(2) With the obtained crossbar patches, we iteratively train two sub-models (i.e., horizontal sub-model and vertical sub-model)in a cascaded training manner. During the training, the trained sub-models are encouraged to become more focus on the difficult parts of the tumor automatically (i.e., mis-segmented regions).Specifically, the vertical (horizontal) sub-model is required to help segment the mis-segmented regions for the horizontal (vertical)sub-model. Thus, the two sub-models could complement each other to achieve the self-improvement until convergence. In the experiment, we evaluate our method on a real CT kidney tumor dataset which is collected from 94 different patients including 3,500 CT slices. Compared with the state-of-the-art segmentation methods, the results demonstrate the superior performance of our method on the Dice similarity coefficient, true positive fraction, centroid distance and Hausdorff distance. Moreover,to exploit the generalization to other segmentation tasks, we also extend our Crossbar-Net to two related segmentation tasks:(1) cardiac segmentation in MR images and (2) breast mass segmentation in X-ray images, showing the promising results for these two tasks.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team