Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Deep Abstraction and Weighted Feature Selection for Wi-Fi Impersonation Detection

Our Title

IEEE Project Abstract

The recent advances in mobile technologies have resulted in Internet of Things (IoT)-enabled devices becoming more pervasive and integrated into our daily lives. The security challenges that need to be overcome mainly stem from the open nature of a wireless medium, such as a Wi-Fi network. An impersonation attack is an attack in which an adversary is disguised as a legitimate party in a system or communications protocol. The connected devices are pervasive, generating high-dimensional data on a large scale, which complicates simultaneous detections. Feature learning, however, can circumvent the potential problems that could be caused by the large-volume nature of network data. This paper thus proposes a novel deep-feature extraction and selection (D-FES), which combines stacked feature extraction and weighted feature selection. The stacked autoencoding is capable of providing representations that are more meaningful by reconstructing the relevant information from its raw inputs. We then combine this with modified weighted feature selection inspired by an existing shallow-structured machine learner. We finally demonstrate the ability of the condensed set of features to reduce the bias of a machine learner model as well as the computational complexity. Our experimental results on a well-referenced Wi-Fi network benchmark data set, namely, the Aegean Wi-Fi Intrusion data set, prove the usefulness and the utility of the proposed D-FES by achieving a detection accuracy of 99.918% and a false alarm rate of 0.012%, which is the most accurate detection of impersonation attacks reported in the literature.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team