Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Deep Learning for Infrared Thermal Image Based Machine Health Monitoring

Our Title

IEEE Project Abstract

The condition of a machine can automatically be identified by creating and classifying features that summarize characteristics of measured signals. Currently, experts, in their respective fields, devise these features based on their knowledge. Hence, the performance and usefulness depends on the expert's knowledge of the underlying physics or statistics. Furthermore, if new and additional conditions should be detectable, experts have to implement new feature extraction methods. To mitigate the drawbacks of feature engineering, a method from the subfield of feature learning, i.e., deep learning (DL), more specifically convolutional neural networks (NNs), is researched in this paper. The objective of this paper is to investigate if and how DL can be applied to infrared thermal (IRT) video to automatically determine the condition of the machine. By applying this method on IRT data in two use cases, i.e., machine-fault detection and oil-level prediction, we show that the proposed system is able to detect many conditions in rotating machinery very accurately (i.e., 95 and 91.67% accuracy for the respective use cases), without requiring any detailed knowledge about the underlying physics, and thus having the potential to significantly simplify condition monitoring using complex sensor data. Furthermore, we show that by using the trained NNs, important regions in the IRT images can be identified related to specific conditions, which can potentially lead to new physical insights.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Base Paper Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team