Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Gated-GAN: Adversarial Gated Networks for Multi-Collection Style Transfer

Our Title

IEEE Project Abstract

Style transfer describes the rendering of an image's semantic content as different artistic styles. Recently, generative adversarial networks (GANs) have emerged as an effective approach in style transfer by adversarially training the generator to synthesize convincing counterfeits. However, traditional GAN suffers from the mode collapse issue, resulting in unstable training and making style transfer quality difficult to guarantee. In addition, the GAN generator is only compatible with one style, so a series of GANs must be trained to provide users with choices to transfer more than one kind of style. In this paper, we focus on tackling these challenges and limitations to improve style transfer. We propose adversarial gated networks (Gated-GAN) to transfer multiple styles in a single model. The generative networks have three modules: an encoder, a gated transformer, and a decoder. Different styles can be achieved by passing input images through different branches of the gated transformer. To stabilize training, the encoder and decoder are combined as an auto-encoder to reconstruct the input images. The discriminative networks are used to distinguish whether the input image is a stylized or genuine image. An auxiliary classifier is used to recognize the style categories of transferred images, thereby helping the generative networks generate images in multiple styles. In addition, Gated-GAN makes it possible to explore a new style by investigating styles learned from artists or genres. Our extensive experiments demonstrate the stability and effectiveness of the proposed model for multi-style transfer.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team