Project centers in Chennai

IEEE Final Year Project Topic for CSE

Base Paper Title

Towards Max-Min Fair Resource Allocation for Stream Big Data Analytics in Shared Clouds

Our Title

IEEE Project Abstract

Distributed stream big data analytics platforms have emerged to tackle the continuously generated data streams. In stream big data analytics, the data processing workflow is abstracted as a directed graph referred to as a topology. Data are read from the storage and processed tuple by tuple, and these processing results are updated dynamically. The performance of a topology is evaluated by its throughput. This paper proposes an efficient resource allocation scheme for a heterogeneous stream big data analytics cluster shared by multiple topologies, in order to achieve max-min fairness in the utilities of the throughput for all the topologies. We first formulate a novel resource allocation problem, which is a mixed 0-1 integer program. The NP-hardness of the problem is rigorously proven. To tackle this problem, we transform the non-convex constraint to several linear constraints using linearization and reformulation techniques. Based on the analysis of the problem-specific structure and characteristics, we propose an approach that iteratively solves the continuous problem with a fixed set of discrete variables optimally, and updates the discrete variables heuristically. Simulations show that our proposed resource allocation scheme remarkably improves the max-min fairness in utilities of the topology throughput, and is low in computational complexity.Distributed stream big data analytics platforms have emerged to tackle the continuously generated data streams. In stream big data analytics, the data processing workflow is abstracted as a directed graph referred to as a topology. Data are read from the storage and processed tuple by tuple, and these processing results are updated dynamically. The performance of a topology is evaluated by its throughput. This paper proposes an efficient resource allocation scheme for a heterogeneous stream big data analytics cluster shared by multiple topologies, in order to achieve max-min fairness in the utilities of the throughput for all the topologies. We first formulate a novel resource allocation problem, which is a mixed 0-1 integer program. The NP-hardness of the problem is rigorously proven. To tackle this problem, we transform the non-convex constraint to several linear constraints using linearization and reformulation techniques. Based on the analysis of the problem-specific structure and characteristics, we propose an approach that iteratively solves the continuous problem with a fixed set of discrete variables optimally, and updates the discrete variables heuristically. Simulations show that our proposed resource allocation scheme remarkably improves the max-min fairness in utilities of the topology throughput, and is low in computational complexity.

IEEE Project Existing System

IEEE Project Drawback of Existing System

IEEE Project Proposed System

IEEE Project Advantage of Proposed System

IEEE Project Enhancement from Base Paper

IEEE Project Hardware & Software

IEEE Project Algorithm

IEEE Project Overview

IEEE Project Efficiency

IEEE Project Literature Survey

To View the Abstract Contents

Or Enquire Now !!!, WISEN Project Specialist will contact you soon.

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team