Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Unsupervised Coupled Metric Similarity for Non-IID Categorical Data

Our Title

IEEE Project Abstract

Appropriate similarity measures always play a critical role in data analytics, learning, and processing. Measuring the intrinsic similarity of categorical data for unsupervised learning has not been substantially addressed, and even less effort has been made for the similarity analysis of categorical data that is not independent and identically distributed (non-IID). In this work, a Coupled Metric Similarity (CMS) is defined for unsupervised learning which flexibly captures the value-to-attribute-to-object heterogeneous coupling relationships. CMS learns the similarities in terms of intrinsic heterogeneous intra- and inter-attribute couplings and attribute-to-object couplings in categorical data. The CMS validity is guaranteed by satisfying metric properties and conditions, and CMS can flexibly adapt to IID to non-IID data. CMS is incorporated into spectral clustering and k-modes clustering and compared with relevant state-of-the-art similarity measures that are not necessarily metrics. The experimental results and theoretical analysis show the CMS effectiveness of capturing independent and coupled data characteristics, which significantly outperforms other similarity measures on most datasets.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team