Project centers in Chennai

IEEE Final Year Project Topics for CSE

Base Paper Title

Unsupervised Semantic-Preserving Adversarial Hashing for Image Search

Our Title

IEEE Project Abstract

Hashing plays a pivotal role in nearest-neighbor searching for large-scale image retrieval. Recently, deep learning based hashing methods have achieved promising performance.However, most of these deep methods involve discriminative models, which require large-scale, labeled training datasets, thushindering their real-world applications. In this paper, we propose a novel strategy to exploit the semantic similarity of the training data and design an efficient generative adversarial framework to learn binary hash codes in an unsupervised manner. Specifically,our model consists of three different neural networks: an encoder network to learn hash codes from images, a generative network to generate images from hash codes, and a discriminative network to distinguish between pairs of hash codes and images. By adversarially training these networks, we successfully learn mutually coherent encoder and generative networks and learn efficient hash codes from the encoder network. We also propose a novel strategy, which utilizes both feature and neighbor similarities, to construct a semantic similarity matrix, then use this matrix to guide the hash code learning process. Integrating the supervision of this semantic similarity matrix into the adversarial learning framework can efficiently preserve the semantic information of training data in Hamming space. Experimental results on three widely used benchmarks show that our method not only significantly outperforms several state-of-the-art unsupervised hashing methods, but also achieves comparable performance with popular supervised hashing methods.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper


Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey


Future Work

To View the Base Paper Abstract Contents

Refer Your Friend
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team