Project centers in Chennai

IEEE Final Year Project Topic for IT

Base Paper Title

Deep Learning: The Frontier for Distributed Attack Detection in Fog-to-Things Computing

Our Title

IEEE Project Abstract

The increase in the number and diversity of smart objects has raised substantial cybersecurity challenges due to the recent exponential rise in the occurrence and sophistication of attacks. Although cloud computing has transformed the world of business in a dramatic way, its centralization hammers the application of distributed services such as security mechanisms for IoT applications. The new and emerging IoT applications require novel cybersecurity controls, models, and decisions distributed at the edge of the network. Despite the success of the existing cryptographic solutions in the traditional Internet, factors such as system development flaws, increased attack surfaces, and hacking skills have proven the inevitability of detection mechanisms. The traditional approaches such as classical machine-learning-based attack detection mechanisms have been successful in the last decades, but it has already been proven that they have low accuracy and less scalability for cyber-attack detection in massively distributed nodes such as IoT. The proliferation of deep learning and hardware technology advancement could pave a way to detecting the current level of sophistication of cyber-attacks in edge networks. The application of deep networks has already been successful in big data areas, and this indicates that fog-to-things computing can be the ultimate beneficiary of the approach for attack detection because a massive amount of data produced by IoT devices enable deep models to learn better than shallow algorithms. In this article, we propose a novel distributed deep learning scheme of cyber-attack detection in fog-to-things computing. Our experiments show that deep models are superior to shallow models in detection accuracy, false alarm rate, and scalability.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team