Project centers in Chennai

IEEE Final Year Project Topic for IT

Base Paper Title

Minority Oversampling in Kernel Adaptive Subspaces for Class Imbalanced Datasets

Our Title

IEEE Project Abstract

The class imbalance problem in machine learning occurs when certain classes are underrepresented relative to the others, leading to a learning bias toward the majority classes. To cope with the skewed class distribution, many learning methods featuring minority oversampling have been proposed, which are proved to be effective. To reduce information loss during feature space projection, this study proposes a novel oversampling algorithm, named minority oversampling in kernel adaptive subspaces (MOKAS), which exploits the invariant feature extraction capability of a kernel version of the adaptive subspace self-organizing maps. The synthetic instances are generated from well-trained subspaces and then their pre-images are reconstructed in the input space. Additionally, these instances characterize nonlinear structures present in the minority class data distribution and help the learning algorithms to counterbalance the skewed class distribution in a desirable manner. Experimental results on both real and synthetic data show that the proposed MOKAS is capable of modeling complex data distribution and outperforms a set of state-of-the-art oversampling algorithms.

Existing System

Drawback of Existing System

Proposed System

Advantage of Proposed System

Enhancement from Base Paper

Architecture

Technology Used : Hardware & Software

Existing Algorithm

Proposed Algorithm

Advantages of Proposed Algorithm

Project Modules

Literature Survey

Conclusion

Future Work

To View the Abstract Contents

Exclusive
Offer
Refer Your Friend
10%
CASHBACK
Refer Another Friend
Thanks for Referring Your Friend / Relation

Now it is Your Time to Shine.

Great careers Start Here.

We Guide you to Every Step

Success! You're Awesome

Thank you for filling out your information!

We’ve sent you an email with your Final Year Project PPT file download link at the email address you provided. Please enjoy, and let us know if there’s anything else we can help you with.

To know more details Call 900 31 31 555

The WISEN Team